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Reliability and performance of microelectronic devices depend to a large extenton
the resistance of interconnect lines. Voids and cracks may occur in the interconnects,
causing a severe increase in the total resistance and even open circuits. In this work we
analyze void motion and evolution due to surface diffusion effects and applied exter-
nal voltage. The interconnects under consideration are three-dimensional (sandwich)
constructs made of a very thin metal film of possibly variable thickness attached to
a substrate of nonvanishing conductance. A two-dimensional level set approach was
applied to study the dynamics of the moving (assumed one-dimensional) boundary of
avoid inthe metal film. The level set formulation of an electromigration and diffusion
model results in a fourth-order nonlinear (two-dimensional) time-dependent PDE.
This equation was discretized by finite differences on a regular grid in space and a
Runge—Kautta integration scheme in time, and solved simultaneously with a second-
order static elliptic PDE describing the electric potential distribution throughout the
interconnect line. The well-posed three-dimensional problem for the potential was
approximated via singular perturbations, in the limit of small aspect ratio, by a two-
dimensional elliptic equation with variable coefficients describing the combined local
conductivity of metal and substrate (which is allowed to vary in time and space). The
difference scheme for the elliptic PDE was solved by a multigrid technique at each
time step. Motion of voids in both weak and strong electric fields was examined,
and different initial void configurations were considered, including circles, ellipses,
polygons with rounded corners, a butterfly, and long grooves. Analysis of the void
behavior and its influence on the resistance gives the circuit designer a tool for
choosing the proper parameters of an interconnect (width-to-length ratio, properties
of the line material, conductivity of the underlayer, etc.g 2001 Academic Press
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1. INTRODUCTION

Evolution and migration of voids in the interconnects of microelectronic devices le
to considerable variations in the total resistance of a line, depending on the void sh
and size and on the specific conductivities of the metal and underlayer. Unpredicte
propagation and dynamics of the void may cause open circuits and other failures. Incre
of the interconnect resistance can often be considered a circuit failure criterion. Analy
of the grain—void interface motion provides valuable information for a circuit designer a
makes it possible to predict the circuit performance and reliability for currently availak
and newly emerging materials. The simulation results can be used for better choice of
circuit parameters, interconnect geometry, underlayer properties, etc.

There are several numerical approaches to track the problem of propagating interf:
(moving curves and surfaces). Bower and Freund [2] developed a finite element formula
and applied it to compute the effect of diffusion and deformation in an electrically co
ducting, deformable solid. They idealized an interconnect as a two-dimensional asser
of grains, with planar grain boundaries. In the absence of electrical current, the diffus
is assumed to be driven by a variation in chemical potential, associated mainly with
free energy of the surface, which in turn is related to the surface curvature. If an el
tric current flows down the line, it gives rise to an additional driving force for diffusior
These assumptions lead to a set of governing partial differential equations of motior
first order in time and fourth order in space, with the corresponding initial and bound
conditions. A weak formulation to solve the equations of motion employing six-node t
angular elements in space and finite differences in time was developed. The finite
ment approach was further extended by Xtaal. [28] who examine the mechanisms
of failure in the interconnects associated with diffusion of material along the surfac
interfaces, or grain boundaries. The authors implemented an improved mesh aday
strategy.

The transmission-line matrix (TLM) approach was used by &ual. [4] to study the
one-dimensional electromigration problem under pulsed direct current conditions. T
TLM approach is a time domain numerical technique involving the use of electrical circ
analogs. In this method, established for solving diffusion and diffusion-related probler
voltage is linked to the vacancy concentration, and current is linked to the mass fl
Another method that can be used for the electromigration problem is the curve track
procedure [5]. Front tracking is a numerical method in which surfaces of discontinu
are given explicit computational degrees of freedom. These degrees of freedom are
plemented by degrees of freedom representing continuous solution values at regular
points.

In this paper, we develop an analytical and numerical approach to track the dynan
of the void motion under the action of a surface diffusion and an external voltage. T
motion is studied using a level set method, where the closed interface between the
and the surrounding material is identified with the zero level of a special two-dimensio
function which depends on space and varies in time. In the case of a single interf:
separating two phases (e.g., a grain and a void inside), the central idea of the leve
method [6, 7] is to follow the evolution of a special function whose zero level correspon
to the position of the moving interface. Motion of the interfaces with sharp corners
studied with the use of essentially nonoscillatory (ENO) schemes with different ord
[14-16].
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Consider a boundary which is either a curve in two-dimensions [9] or a surface in thi
dimensions [10], separating one region from another. Usually, the basic assumption is
this curve or surface moves in its normal direction with a known speed funEticrhe
tangential motion is neglected. The normal speed depends on the local properties of
front at the given point (such as curvature and/or its derivatives, derivatives of electric fi
strength, etc.), on the global properties (such as integrals along the front, which, in t
depend on the shape and position of the front), and on the independent properties (ma
constants, etc.). Given the initial position for an interf&gevherer is a two-dimensional
closed curve, the level set method vielas the zero level of a functias(x, y, t). Initially,
the level function is defined to be a signed distance from a given point to the interface li
The functionis negative inside the front and positive outside the front. For a two-dimensio
case, the level functiog is governed by a partial differential equation, which involves the
normal velocityF of the interface curve [11]:

¢+ F /o7 +¢F=0. (1.1)

Generally,F depends on the specific physical problem under consideration. In the pres
study, the front velocity includes the surface diffusion and electromigration componer
depending on the second derivatives of the interface curvétuaad of the voltageJ,

respectively [26, 31]. The motion of the interface separating the void from the metal
due to surface diffusion and therefore the interface can be viewed as “sharp” on the mé
scale. The connection between sharp and diffused interface motion laws via gradient 1
can be found in [33]. The derivatives are taken with respect to the interface arckengtt

F = BKgs + aUss. (1.2)

The constant coefficient8 anda express the contribution of the diffusion forces and the
field forces, respectively. They depend on the properties of the material, temperature,
and are considered constaBtis always positive and is positive for the migration of a
void surrounded by a conducting material. The ratio between the diffusion forces and
field forces is of great importance since it defines the dynamics and stability of the v
motion. In any case, the void migrates in the direction opposite to the external voltage,
its evolution varies, depending anf B. When the diffusion forces prevail, any initial shape
of the void becomes circular. For a moderately strong field, the circular shape of the v
remains in equilibrium, but such equilibrium is no longer stable, and another noncircu
stable equilibrium shape exists. For an extremely strong field, a void of any shape, wh
area exceeds a definite threshold, ceases to be stable and splits into several slit-like sn
voids.

The governing PDE needsto be solved only in the vicinity of the interface; however ittur
out that the computational bottleneck is presently the solution of the two-dimensional, ell
tic, electrostatic equation. For simplicity we used initially an algorithm that solves the diff
sion equation for the entire internal domain of the two-dimensional computational box; 1
definition of the normal velocity is extended from the interface points to all points of tf
box. For this, we consider an arbitrary point and draw a line of constant level that pas
through this point. The level value vanishes at the interface points only; otherwise we ©
with a nonzero level line. The curvature of the level line, the voltage, and their derivativ
with respect to the level line arclength can be established at any point. Thus, the govert
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PDE is extended to noninterface points. On the exten&iggis the second derivative of the
curvature of the level line, which passes through a given point, with respect to the arcler
of this level line, andJss is the second derivative of the potential with respect to the leve
line arclength.

The front velocity depends on the second derivative of the curvature, and the curvat
in turn, is defined by the second derivatives of the level function. Therefore the govern
PDE is of fourth order in space and of first order in time. The equation is solved num
ically by applying an explicit time-integration approach: finite difference discretization |
space and a Runge—Kutta 2 integration scheme in time. Such a low-order Runge—K
scheme is justified by the relatively small magnitude of the time step, which is dictat
by the stringent stability requirement. For the explicit scheme, the upper bound of the
lowable step is proportional to the fourth power of the spatial grid resolution. The ar
which is confined by the closed front remains constant during the void motion. The appl
scheme does not necessitate boundary conditions (BC). Instead of BC, we use one-:
differences to approximate the derivatives at the boundary points of the computatic
box.

The interface configuration is specified by a finite set of discrete points which genere
a closed curve. These points do not necessarily coincide with the grid points of the c
putational box. A spline technique is used to restore the parametric equations of the fr
We apply the standard cubic spline using cyclic boundary conditions. To estimate
new location of the front, the zero line of the level function is established. For this, v
solve numerically a nonlinear equatigr(x, y) = 0, moving along the gradient lines in
ascending and descending directions. The previous location of the front is used a:
initial approximation for its current location. At nongrid points, the level function and it
derivatives are approximated by a double polynomial interpolation of fifth order.

The level function, defined initially as a distance from the given point to the interfa
curve, ceases to be a distance function after at least one time step. In this case, a |
tialization procedure is necessary. When a time step is completed, we find the inter
configuration as the zero level line, and then we update the level function, calculat
the distances between the grid nodes and the moving front. If the reinitialization proced
is employed several times per each time step, then the level function coincides with
distance to the interface curve. The number of reinitializations corresponds to the orde
the Runge—Kutta scheme. For the level function, coinciding with the distance, the grad
is of unit length:

P+ ;=1 (1.3)

Then, the following relations hold for the curvature and its second derivative. These simp
the computational procedure:

K = V%; Kgs= V2K — K3, (1.4)

Analytic results were also obtained for the rate of change of the interface length.

The voltage distributiotd (X, y) is described by an approximate elliptic PDE, which is
derived from the well-posed three-dimensional potential problem for the two-layer int
connect. The assumptions and derivation for the case of small aspect ratio is described
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and results in

0 ou 0 ou
— [ k— —(k— ) =0 1.5
ax( 8x)+ay< 8y> ’ (1.5)

wherek(x, y) is the specific electric conductivity of the material, and it varies in spac
through the presence of the void. A finite difference scheme was developed and analy
to solve Eq. (1.5). This equation requires continuous distribution of a specific conductivi
However, this distribution in the physical system under consideration is discontinuo
The conductivity inside the void differs by a finite value from that of the surroundin
material. In the finite difference approach, the discontinuous distribution of the conductiv
is smoothed by a special function. The finite difference discretization of the domain lead:
a linear algebraic equation set with a sparse band matrix. This set is solved with an effec
multigrid iterative procedure, developed specially for a boundary value elliptic proble
with rapidly varying coefficients. The solution of the previous time step is used as an init
approximation for the current step which allows fast convergence. Then the total resista
of the interconnect may be established.

A specific feature of the level set procedure, related to the void motion in a strong fie
was developed. The generating points of the interface curve, which were initially eque
or almost equally spaced, become located more and more nonuniformly as the time s
proceed. After a number of steps, most of the generating points will be located in a fai
small portion of the interface curve, while the long portions contain only a few generati
points. Therefore, the level set analysis requires an additional procedure to redistribute
generating points in a “forced” equally spaced manner after each time step or after sev
time steps. This redistribution is done using the spline technique.

Various simulations for void motions and evolutions were performed. These simulatic
assume different initial configurations for the interface: ellipse, polygons with rounds
vertices (equilateral triangle and square), butterfly, and a long groove with rounded et
The simulation results include three-dimensional plots of the conductivity and volta
distribution, the current configuration of the void, the values of the interface perimeter, 1
area confined inside, and the total resistance of the interconnect at current time anc
graphs for the interface curvature and its derivatives vs the arclength, the voltage anc
derivatives vs the arclength, and the resulting normal velocity of the front.

Thus far, existing level set finite difference formulations consider the second order
space) governing equations where the speed function depends on the curvature only a
independent of the derivatives of the curvature. However, in diffusion problems in materi
science, the normal velocity of the front is thought to be proportional to the second derivat
of the curvature with respect to the interface arclength. This yields a fourth-order equat
which is analyzed in this paper. The level set method is still applicable; however, the in
gration algorithm differs a great deal from that for a second-order equation. In particul
it was established that for central differences in space and Runge—Kutta in time, the 2
level has to be computed and the distance function has to be reinitializeds per each
time step, whera is the order of the Runge—Kutta scheme.

The paper has the following structure: In Section 2 we describe the basic govern
equations for the void dynamics and evolution. Section 3 describes the numerical (fir
difference in space and Runge—Kutta 2 in time) algorithm for the solution of the governi
PDEs. The voltage distribution is found using a special multigrid solver which is describ
in Section 4. Results of simulations are given in Section 5.
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2. MODELING SURFACE DIFFUSION AND ELECTROMIGRATION

2.1. Estimating the Curvature and Its Derivatives

Considerthe time-dependent functip(x, y, t) whose zero level at any fixed tinhgields
an instant configuration of the moving void interfate, y) = 0. If the interface lind (t)
is specified, then the level functigix, y, t) may be defined as a signed distance from the
given point(x, y) to the front linel(t). In this work only closed fronts are considered. The
normal velocityF of the moving front varies for different points of the interface. It depend
on the curvature of the front, its derivatives, the distribution of electric fields along the fro
and other factors. With these assumptions, the evolution of the level function is descri
by Eq. (1.1) where the speed functiénis given by Eq. (1.2).

By integrating Eq. (1.1) we obtain(x, y, t), and then for any fixed = ty, we solve
¢ (X, Y, tp) = 0 and obtain the interfadé(ty)). The initial position of the fronf"(0) should
be specified. However, the boundary conditions for Eq. (1.1) are not needed, provided
sizes of the computational box considerably exceed those of the domain inside the fr
At the internal points of the computational box we used central differences to approxim
the derivatives. At the bound lines of the box, we used one-sided differences.

Assume thalt) (x, y) isthe electric potential within the computational box; andU * are
its values on the left and right vertical boundaries, respectivelyWgnsithe normal deriva-
tive on the boundary. The distributidh(x, y) is governed by a static (time-independent)
elliptic equation (1.5) with boundary conditiols = U, = 0 along the horizontal bounds
of the rectangular computational bd*~ andU* are assumed to be constaldtf — U~
is the external voltage applied to the interconnk¢x, y) is a given function which rep-
resents the distribution of the material conductivity within the box. Usually, we assur
k = kout = constoutside the interface and= ki, = constinside. For a void that resides
inside the interconnect we halg,; > 0, ki, > 0, andkoy > kin. Usually,ki, is nonzero if
the underlayer’s conductivity is taken into account and averaged through the intercon
thickness.

Since the front moves in time, Eqg. (1.5) contains the time-varying coeffikienty, t).
Thus, its solutionJ (x, y) is time-dependent too. Normalizing the time unit, we set th
diffusion coefficientB to be equal to one, and Egs. (1.1) and (1.2) become

¢ + (Kss+ aUss) ¢>% + ¢y =0. (2-1)

If ¢ is a distance function, then its gradient is of unit length (Eqg. 1.3), and Eq. (2.1)
simplified to

ot + Kss + alss = 0. (2.2)

Our goal is to expresk andKssin terms of¢ and the Cartesian components of its spatia
derivatives, and to expresss in terms ofU, ¢, and the Cartesian components of their
derivatives. For the rectangular grid, these Cartesian derivatives are more convenient t
than the arclength derivatives. The above is accomplished via the following steps.

Estimating the absolute value of the distance functidfirst, let us describe the proce-
dure for establishing the level functigrat any point in the plane when the interface contou
is specified. Assume (X, y) is a signed distance between the fixed (but arbitrary) poir
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(X, y) and a specified continuous closed curve. Assume also that this closed line is defi
parametrically in a two-dimensional region by the Cartesian comporfeatsand fy(r),
wherer is an arbitrary parameter, not necessarily the arclength. However, in particula
may be the arclength or proportional to the arclength. In some practical dagesand
fy(r) are not specified explicitly, but the line is set by a sequence of individual points. The
the parametric functions may be restored by applying a spline technique. The obvious
to search for a minimum distance between the given poiny) and the specified line is
as follows:

P2(r) = [fx(r) — x]2+ [fy(r) — y]? = min
(2.3)

o dfy df
Ho) L) — X+ =yl =0

Estimating the distance by the Newton—Raphson iterative procedlrpiation (2.3) can
be solved numerically for the unknowrby applying the Newton—Raphson iterative proce-
dure. Assume that theth approximation for is already found. Then the next approximation
forr is defined as

FOH = ® _ H[ O] /H O],

where

2 2 2
H'(r) = (%) + (%) + [ () — ]dOI f2 +[fy(r) — y] f . (24

Estimating the distance by the golden section methdthe Newton method converges
rapidly (quadratically), but if the initial approximation is not properly chosen, it does n
converge at all. In these cases we apply the stargtaicién sectiomethod to establish the
distance from the given grid point to the interface line. The golden section always converc
butit converges slowly (linearly). The functidnt) whose minimum is sought, can be either
an unsigned distance or a square of the distance. Now assume that the proper value
is established. Without knowing the sign, the level funcija®, y) can be defined by Eq.
(2.3).

Establishing the sign of the distance functiodo establish the sign af, we have to
discover whether the given poify, y) is located inside or outside the front. For this purpose
consider the distance vectlr(connecting the given point in the plane to the nearest poir
on the line), the outward normal vectoy and the tangent vectoras described in Fig. 1.
Their components are

N(fx — X, 1:y - y)a t( dr’ dr ) n(dr’ dr) (25)

Vectorst andn are not necessarily of unit length. Equation (2.5) expresses the fact tt
N-t=0, i.e.,,N is normal tot. Then, it follows that the distance vecthris collinear
with the normal vecton If N - n > 0, their directions coincide, and this means that the
considered pointx, y) is located inside the front. In this case, the distance funcgion
should be negative. F&& - n < 0, ¢ is positive,

dfy

. . . dfy
signg = —sign(N - n) = S|gr{( fy — y)W — (fy — x)W . (2.6)
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FIG. 1. Establishing the distance function sign.

Level line curvature. For an arbitrary functiomp (x, y), which does not need to be a
distance function, the components of the unit normal to the level line are

Ny = Px Ny — ¢Y (2_7)

CJerer T Jert+ el

The curvature is a divergence of an outward unit normal [8]:

K — dNy n % _V.n— ¢xx¢)2/ - 2¢xy¢x¢y + ¢yy¢§

= T oy (72 + ¢)2/)3/2 (2.8)

We assume thai(x, y) is a distance function. Then identity (1.3) is valid, and Eq. (2.8) i
simplified to

K(X, Y) = ¢xx + dyy = V20, (2.9)

i.e., the level line curvature is equal to the Laplacian of the distance function. Althou
relationships for the curvature (2.8) and (2.9) are analytically equivalent, provided 1
level function coincides with the distance, they lead to different numerical schemes. Th
schemes are both conditionally stable, but the stability constraints (relations betweer
cell size in thexy plane and the time step) prove to be different. Equation (2.9) requir
the second derivatives with respect to one Cartesian coordinate only. Equation (2.8) utili
in addition to this data, the first derivatives and the mixed second derivative. Unfortunats
the scheme based on the simplified linear differential relation (2.9) between the curva
and the distance function required a smaller time step value in order to allow the numer
solution to proceed stably, and therefore it is not necessarily recommended for prac
use. However, the information about the unit length of the gradient vector can be introdu
into Eq. (2.8), and this yields

K = ¢xxf — 20xydxdy + byyd. (2.10)
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Note that the stability constraints of the numerical schemes, approximating the curva
by second-order differences using Eqg. (2.8) and Eq. (2.10), are the same.

Arclength derivative of voltage.We now derive the expression for the derivatives of ar
arbitrary functionU (for example, the distribution of electric potential) with respect to the
arclength of the level line. The first derivative is

By using Eq. (2.8), the second derivative becomes

aUs aUs

Uss= ———¢y + 8—y¢x = Uxx; — 2Unydudy + Uyyps — KU, (2.12)

aX

Equation (2.12) may be rewritten as

Uss+ Unn + KUn = VZU
Un = Ux¢x + Uy¢y (2-13)
Unn = Uxx¢§ + 2ny¢x¢y + Uyy¢§,

whereU, andU,, are the first and second derivatives with respect to the distance in t
normal direction.
Arclength derivative of curvature.So far,U (x, y) is an arbitrary function. In particular,
Eq. (2.13) can be applied to the curvature:
Kss+ Knn + KKp = V2K. (2.14)

In order to simplify Eq. (2.14), we derive the relation between the curvefusnd its
normal derivativeK,,. For this purpose we differentiate Eq. (1.3) twice with respect to
andy:

¢x¢xx + ¢y¢xy =0 ¢§x + ¢x¢xxx + ¢)%y + ¢y¢xxy =0 (2 15)
Dxbxy + GyPyy = 0 ¢fy + Pxxyy + ¢)2/y + Pydyyy = 0. .
It follows from (2.15) that
buxbyy = B7y- (2.16)

In other words, the Jacobian f¢x andgy, vanishes, since these two functions are depende!
through Eq. (1.3). Introducing (2.16) and (2.9) into the second set of Eq. (2.15), we obt:

Lo Loy
PuxK + a;X =0; ¢yK + a—gy =0. (2.17)
Set (2.17) yields

K24+ K, =0. (2.18)
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Now the second normal derivative of the curvature can be easily obtained:

aK 3
1= K?Z=_-2KK,=2K3 (2.19)
an an

Insertion of (2.18) and (2.19) into (2.14) yields

Knn =

Kss = V2K — K3, (2.20)

Note that the stability constraint for the difference scheme that uses Eq. (2.13) allow
larger step value than those that use Eq. (2.20). Therefore, the simplified relation (2.20
the second derivative of curvature with respect to the arclength is not necessarily rec
mended for the numerical implementation.

Derivation of the two-dimensional electrostatic equatiokVe consider a conducting
strip made of a thin metal film, attached to a strip of nonzero conductivity substrate. T
metal film may be continuous or it may be made of conducting patches with voids
between. We allow the metal film and substrate to have variable thickness. In the pre
formulation we neglect the interface resistance. The strip is attached to electrodes &
ends. We may want to compute the total resistance of the strip as well as the local f
strength which determines the resulting electromigration. This is a more realistic mo
than the model based on the assumption of a zero conductivity substrate. It also allow
to consider the behavior of a metal film with varying effective thickness at no extra co
More details are given in the Appendix.

The three-dimensional problemOhm'’s law implie§ = cE = —o V3¢, wherej is the
electric current density vecto is the electric field vectow is the electric potential, and
o is the material conductivity. For steady fields, Maxwell's equations with vanishing spa
charge give

d
Vi3-j =0, where V3= <8’ i ) (2.21)
oX dy 0z

Hence
Vg . (0V3¢) =0. (222)

At all external (lateral) boundaries there is no flux in the direction of the nommab that
n-j =0, and using (1.1) one gets

n-Vsp = 0. (2.23)

The conditions (2.23), together with values of the potential specified at the two ends of
strip and the continuity and jump conditions at the interface, constitute boundary cor
tions for Eq. (2.22) in the two layers. Thus the three-dimensional potential can be fou
in principle, as the solution of a well-posed three-dimensional boundary value proble
However, such a solution can be very expensive to get in the present geometry, in partic
as singularities in the solution will appear at sharp geometrical corners at crystal bou
aries or voids, requiring high resolution or complicated integration formulas. To avoid tf
(probably unrealistic) behaviour of the solution and to avoid solving three-dimensiot
problems many times, as required by the time development of the process, we proceed
an approximate approach suggested by (singular) perturbation theory.
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The two-dimensional equationWe assume thap ando change over a characteristic
length scalel in the horizontal directions andy but over a scaleH in the vertical.
Furthermore we assume that= H/L « 1. Using scaled variables in Eqg. (2.22),

(X,Y,2)=(x/L,y/L,z/H), (2.24)
we get
2 d I\ _ i 0
€“Va (o Vo) + 82(082) =0, where V,= (ax, 8Y>' (2.25)

Singular perturbation analysis considers an expansion
¢ =¢)O+62¢l+64¢)2+"', (2.26)

where thepX are functions of order 0(1) ia.
Substitution of Eq. (2.26) in Eq. (2.25) gives relations for the functignby grouping
terms according to their order inand equating each group to zero. The zeroth-order tert

gives% = 0; thusgy is a linear function ire for everyx andy, while taking into account

(2.23) kills off thez dependence, so that
¢% = %X, Y). (2.27)

Thus at this stage? is an arbitrary function of the horizontal coordinatésandY. The
first-order equation and the boundary conditionZiresult ultimately in the approximate
two-dimensional equation fai® (see Appendix A)

Va(hio1 + h202) V2¢° = 0, (2.28)

wherehy, o1 andh,, o, are, respectively, the heights and conductivities of the two layer
under consideration. This equation is solved with boundary conditions irkthé)(plane.

Note that the approximate independence of the potestiah the Z coordinate also
justifies the two-dimensional approach for the electromigration equation. This behavit
is a consequence of the small aspect ratio assumption and the normal derivative boun
conditions (2.23), where one must also use a small slope assumption.

Governing equations. Finally, we collect all the governing equations for the void inter-
face evolution under the surface diffusion and electromigration:

¢t + Kss+alUss =0 Partial differential
V-kvU =0 equations

K= ¢xx¢)2/ - 2¢xy¢x¢y + ¢yy¢3 = VZ(b
Kss= V2K — KK, — Kyn = V2K — K3
Uss = V2U — KU, — Upp
Kn=VK. V¢ =—K?2

U,=VU - V¢

Knn = Kxxﬁbf + Kyydxpy + Kyyﬁb)z/ = 2K3
Unn = Uxx@Z + 2Uxydxdy + Uyydh?.

Algebraic

relations (2.29)
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In particular, if we take into consideration only the surface diffusion and neglect t
electromigration, set (2.29) is simplified to become

¢t + Kss = 0. (2.30)

In this case, the only possible equilibrium configuration of the front is circular. Indee
assume the equilibrium takes plage:= 0. ThenKgs also vanishes, anld (s) = as+ b.
Due to continuity of the curvaturéS (0) = K (Snax) Wheresmay is the length of the closed
interface. Thereforea = 0, andK = const. The constant curvature front is circular anc
K = 1/radius. For the front evolution governed by Egs. (2.29) and (2.30), thefareade
the interface remains constant:

Z—?: %Fds: f(KSS+aUSS)ds= Ks + aUslgm = 0. (2.31)
This integral vanishes because of the continuitiKgfandUs. However, the length of the
interface does not remain constant. For the governing Eq. (2.30), the perimeter decreas
the arbitrary initial shape tends to a circle while keeping the area of the void constant. -
constant area inside the void is in agreement with the material conservation law. Howe
for some other types of governing equations, the area which is confined by the front is
longer constant. Consider, for example, the second-order equation

¢p—K=0 or ¢ — V=0, (2.32)

where the normal speed of the front coincides with the curvature up to the sign. The rat
change of the area is

Z—?:%F(K)ds:—%de:—Zn. (2.33)
Consequently, the confined area decreases uniformly, akgf (@7 ) normalized time units,
the front collapses to a point. An example of the numerical simulation of such motion
presented in Fig. 2.

Equation (2.32) is solved by finite differences in space and Runge—Kutta 2 in time. Si
the governing equation is of second order in space, the time step is limited, becaus
stability reasons, to being

At =2h%,  h =min(Ax, Ay). (2.34)

We seth = 1/8 and we obtained a stable scheme. The initial front is elliptic with semi-ax
1and 2. Thus, the initial area ig2and it should collapse after one time unit. The size of the
computational box is & 8, and the space grid is 6060 nodes (or 5% 59 intervals). The
spatial resolution i& = 8/59 = 0.1356. The time step iat = 2.298. 10°2. The internal
phase should completely disappear after 435 steps, and it really does. Due to the smal
of the resulting area confined by the front, it is impossible to perform further computatio
In fact, after 430 steps only a few grid points have been left inside the front. This lead:
considerable error in the estimation of the curvature. The derivatives of the curvature
not needed to solve the governing equations; they are calculated and plotted as a refel
source. As we see, the eccentricity of the front decreases as it evolves. During its colla
the initial elliptic front tends to a circle.
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FIG. 2. Collapse of elliptic front under the second-order elliptic equation.

2.2. Variation of Interface Length

In this section we study the rate of change of the front length by considering the seco
(2.32) and fourth-(2.30) order equations. Sethian [11] introduced the time-independ
parameterp, related to the arclength= s(p, t). For example, the arclength of the initial
front or the arclength of the reference configuration may be used as paraméter
considered the metrig(p, t) = ds/dp and derived the evolution equations for the metric
and for the curvature:

g = KFg (2.35)
Kt=—13<?aF>—K2F (2.36)
gap\gap

Note that

o adp 1 @

=2 F_ C—. 2.37
s opds g(p,t) ap (.37)
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Then Eg. (2.36) may be rewritten in terms of the arclersls
Kt = —Fss— KZF, (2.38)

where both curvature and speed function depend on the present arclength coordinate. E
tion (2.35) yields the perimeter variation rule:

%fds: %%g(p,t)dp:?{gt(p,t)dpzf‘Kngpz %KFds (2.39)

Now we apply this rule to two distinct speed functions of the interface.

1. The speed function is proportional to the curvature.
d 2
F=—-AK, A=const A>0. at ds=—-A ¢ K“ds (2.40)

The perimeter decreases for all time.
2. The speed function is proportional to the second derivative of the curvature w
respect to the front arclength.

F=BKss, B=const B>0
d r .
a% ds= Bj{KssK ds= Bj{Kszz—Bf KsdK =—B%K§ds (2.41)

The perimeter decreases, provided the curvature is not constant along the interface. How
in the previous section it was proved that for such a speed function the confined area rern
invariant. This means that any initial shape of the front tends to a circle, whose curvat
K =const

Next we derive the second-order terms for the interface length variation. We start w
two general remarks.

Remark 1: transport theorem Consider an arbitrary functiohl = H (s, t) which de-
pends on time and the arclength coordinate of the front. Note that this coordinate is tit
dependent by itself% § H(s, t) dscalculates the time derivative of the integraltdfover
the changing interface contour. So far, we cannot interchange the time differentiation
integration operations because the integration path depends on time. To make such a
mutation possible, we switch to the time-independent paranpadefined by the metrig,

d d ds d
a%H(s,t)ds: a7{H(p,t)d—pdp: a7{H(p,t)g(p,t)dp

=7{Ht(p,t) g(p,t)dp+j{H(p,t)gt(p,t)dp, (2.42)

whereg; is defined by the metric evolution rule (2.35). Therefore

%%Hds:%ths+?{HKFds (2.43)

Equation (2.43) is an analog of the Reynolds Transport Theorem in continuum mechal
[13].
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Remark 2: commutation rule.Consider a mixed space—time derivative and commut
the order of differentiation:

Y dHs 9 oH 0 0H/Op 0 Hp  Hpg— Hpo
st = = = ==

gt~ dt as ot 9s/ap ot g o?
Hp — HoKF  13H, KFaH
= P - — Hs— KFHs. (2.44)
g gap g ap

Note that the order interchange for the differentiation with mixed derivatives is allowed f
independent variables only.
We return to our discussion on second-order terms. Due to Eq. (2.39),

d? d
il — — ¢ KFds= ¢ K\F KF K2F2 2.4
e j[ds dt% ds 7{ t ds+7{ tds+% ds, (2.45)

where rule (2.43) is use; is defined by the curvature evolution law (2.38). Thus, we

obtain
d? :
Ej{ds:—?{FFssdHfKlﬁds:yf|:§ds+j{KFto|s (2.46)

Now we consider two specific cases for the front normal veldgity

1. The velocity is proportional to the curvature, Eq. (2.40):

d2
ﬁfdbzAszgds—AZfK“ds (2.47)

2. The velocity is proportional to the second derivative of the curvature, Eq. (2.41):

d
ﬁj{ds: 827{ K2, ds+ 87{ K Ksstds. (2.48)

With the use of the commutation rule (2.44), Eq. (2.48) becomes

2
%j{ds: 28274 K2, ds— 2827{ K2K2.ds— 82/3f Kids. (2.49)

By expanding the interface length in a Taylor series and neglecting the high-order term

%ds(t + At) = fds+ d j{dsAt + L j{dsA—tz + O(At®) (2.50)
B dt dt2 2 ' '

Various computer simulations were carried out for both second-order and fourth-or
governing equations to analyze the variation of the interface length. The linear term
Eg. (2.50) appeared to have a reasonable degree of accuracy in the numerical simulat
However, this was not true for the second-order term. “Central differences in space
Runge—Kutta 2 in time” was the chosen scheme. The accuracy of the central difference
of second order. The time step was taken tarbe- Ah? for the second-order governing
equation and\t = Ah* for the fourth-order equation, whehe= min(Ax, Ay) is the reso-
lution of the spatial grid. This scheme is a good representative for studying the dynamic:
moving fronts, but its accuracy is not sufficient to estimate the second-order termin (2.5
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3. FINITE DIFFERENCE FORMULATION

3.1. Runge—Kutta Integration Scheme

At this point our goal is to solve the set (2.29) numerically for a specified initial interfac
of the level function and for specified boundary conditions for the voltage. The princig
time-dependent equation (2.2) describes the evolution of the level function. It is discreti:
by finite differences in space and by Runge—Kutta in time. The auxiliary equation (1
is time-independent since it does not include time derivatives. Recall, however, that
electrical conductivityk(x, y) varies in time through the front motion. Althougikix, y) is
time-dependent, this is a known preset function at any fixed time. The elliptic equation (1
is solved repeatedly by finite differences. The difference scheme is discussed in Section
For now we assume that the nodal values of the voltdgare established at all times.
Turning back to Eq. (2.2} (x, y, t) should be considered as a given external functior
According to Eq. (2.13)Jss requires evaluation of the first and second derivativés$ ahd
¢. Those are calculated by central differences (applying the standard formulas of sec
order accuracy), except for the points on the contour of the computational box, wh
the one-sided differences are used. The second derivative of the curvature with respe
arclengthK s includes the fourth-order derivatives of the level functgorHowever, due to
numerical considerations, itis more convenient first to calculate the curdatoyepplying
second differences to the level function, and then to estakilishAnd this is accomplished
by applying second differences to the curvature.

Once the differential operators in the spécey) have beenreplaced by the corresponding
difference operators, the evolution PDE that is described by Eq. (2.2) is transformed in
set of ODEs:

déi

4 = i@ V). 3.1)

Each equation of the set (3.1) corresponds to a specificinotiae grid. Vectorsp andU
in (3.1) represent the node values of the level function and voltage, respectively, accort
to the difference operators. Recall that= U(¢), and therefore (3.1) may be presented a:
dei/dt = f;(¢). Thisis a standard set of ODEs, and Runge—Kutta integration schemes
appropriate. The schemes of order 2, 3, and 4 were tested and produced the proper re
Note that the distance functigrhas to be reinitialized times and the voltage distribution
PDE (1.5) has to be solvadtimes per time step, whereis the order of the Runge—Kutta
scheme. Therefore, the high-order schemes are computationally expensive. On the
hand, a small time stept = Ah* is dictated by the stability requirements. The spatia
resolutionh = min(Ax, Ay) should be sufficiently small to provide accurate calculation:
for the fourth derivatives of the moderately varying function. Consequentlys usually
small enough that even Runge—Kutta order 2 yields an acceptable accuracy. Therefore
second-order scheme that is being used is:

ki="f(p,t); ko= f(p+Atky); dt+Al) =0+ %(k1+ ko). 3.2)

This scheme is accurate to ordet?, and the discrepancy (error generated in one step)
proportional toAt3. Numerical tests revealed thashould not exceed/B, or else stability
is lost. It is interesting to note that this critical valuejoproved to be approximately the
same for any order of Runge—Kutta scheme.
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Below we present the computational steps to integrate the evolution equation (2
Although the algorithm assumes a Runge—Kutta order 2 integration scheme, the same ¢
can be also applied to the Runge—Kutta scheme of any order, provided that the obvi
modifications are inserted.

1. Theinput data is a set of generating poit¢sy) which describe the initial configu-
ration of the interface curve. These points do not necessarily coincide with the rectang
grid points.

2. Apply the spline technique to restore the analytic parametric relationships for t
interface curvex = fy(r),y = fy(r); 0<r < 1.

3. If necessary, redistribute the generating points in a uniform manner, such that
arclength between any two successive points is the same.

4. Following Egs. (2.3—-2.6), we establish the distance function at each node. We
the Newton iterative procedure to solve the nonlinear equation anddlden section
minimization technique when the Newton procedure fails to converge.

5. Apply the difference approximations and calculate at each node the derivatives
the distance function and the curvature of the level line.

6. Apply the difference approximations and calculate at each node the derivatives
the curvatureKs andKss with respect to the arclength of the level line.

7. Using the node values of the distance function, calculate for these points the electr
conductivity. In other words, if the sign of the distance function is negative, then we &
inside the void. If it is positive, we are outside the void and the conductivity of the mater
should be used.

8. Solve the elliptic equation (1.5) for the appropriate boundary conditions and obtz
the nodal values of the voltage distribution.

9. Estimate the total resistance of the interconnect line, Eq. (3.23).

10. Apply the difference approximations and use Egs. (2.11) and (2.13) to calculate
node values of the voltage derivatiids andUss with respect to the arclength of the level
line.

11. CombineKgswith aUssand reverse the sign, producing the node valuek;forthe
Runge—Kutta scheme, Eq. (3.2).

12. Calculate the updated node values of the level functhdPf = ¢ + Atk, .

13. Find the interface curve points of the updated level function by solving the equati
¢"Pd(x, y) = 0 numerically. The previous configuration of the front is used as an initiz
approximation.

14. Usingthe setof points obtained in the previous item, repeat steps 2—10 for the upd
level function.

15. CombineKgswith «Ugg and reverse the sign, producing the node valués of the
Runge—Kutta scheme, Eq. (3.2).

16. Calculate the node values of the level functioh-atAt by applying the last formula
of set (3.2). Now we have = ¢(t + At).

17. Solve the equatiog(x, y) = 0 numerically and find the interface curve points of
the level function.

18. Apply the polynomial interpolation technique, calculate the values of the curvatt
and voltage and their arclength derivatives up to the second order at the interface poin

19. In the next time step, repeat steps 2—-18.

Remark. Steps 13 and 17 require solving the equatiar, y) = 0, i.e., finding the set
of points(x, y) in the plane where the level function vanishes. Assume we do know th
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set approximately. In other words, we have at our disposal a set of gaingg which
generates a closed curve. On this set of points the level function does not necessarily v
(p(X,y) # 0), but it assumes small absolute valugsx, y)| compared with the size of
the computational box. Consider an individual paixty). Our goal is to find the updated
values ofx andy where the level function vanishes. Expand the level function into a Tayl
series while neglecting the high-order terms:

G(X+ AX, Y+ Ay) = (X, Y) + dx (X, Y) - AX + ¢y(X, y) - Ay = 0. (3-3)

We search for the point of the zero profile, which is the closest to the pojyt) under
consideration. Therefore, we move in the gradient direction for the negative values of
level function, and move in the counter-gradient direction for the positive values

AX = woy(X,y) Ay = woy(X,Y), (3.4)

where the sign ofv should be opposite to that 1{x, y). Substitute (3.4) into (3.3) and take
into account the unit gradient length of the distance function. We obiai—¢ (X, y).
This leads to an iterative procedure which yields a point of the zero profile:

X(n+1) — X(n) _ ¢ [X(n)’ y(n)} . ¢X [X(n)’ y(n)]

(n+1) ) (3-5)
y — y _ ¢ [X(n)’ y(n)} . ¢y [X(n), y(n)] .

The procedure requires a bipolynomial interpolation to establish the values of the le
function and its derivatives at an arbitrary nongrid point.

3.2. Forward and Backward Difference Approximation for the Level Function Derivative

When Eqg. (2.2) is solved numerically, the boundaries of the rectangular computatic
box should be far away from the front contour (as compared to the size of the area confine
the front). Otherwise, closeness to the boundary will affect the front motion. And converse
if the void interface is far away from the box bounds, the boundary conditions do not mat
However, this does not mean that any boundary conditions can be applied. We realized
improper boundary conditions yield poor results, and we believe that for the closed fr
evolution problem, the boundary conditions should have no influence. Therefore, we n
to estimate the spatial derivatives of the level function not only at the internal points of 1
box but also on the box contour. Central differences cannot be applied to the contour pc
since they require ghost values outside the box. These values, in turn, cannot be establ
because of the lack of boundary conditions. Therefore, we use forward and backw
differences. As we have already mentioned, although the governing equation (2.2) i
fourth order in space, we do not approximate the fourth-order derivatives by differenc
Instead, we apply the second differences twice. Recall that the errors of the central differe
approximations adopted are of ordiér Consequently, we have to establish the forward an.
backward formulas with the same order of accuracy. For an equally spaceg, gtidxz, X3,
the first and second derivative approximations are

, —3fg 4+ 4f, — f
fl(xg) = ——— 22 2Axl 2 L 0o(Ax?)

2fo—5f1 +4f, — f (3.6)
t(xg) = 20PN T AR TN L 5 a2),

AX2
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wherefi = f(x)i =0, ..., 3. To derive the formula for the mixed second derivative, we
apply Eqg. (3.6) repeatedly. For the corner points, we apply one-sided differences only.
the noncorner boundary points, we apply central differences in the direction of the cont
line, and one-sided differences for the normal direction. In particular, the mixed secc
derivative is obtained by applying the central and one-sided difference sequentially.

3.3. Far Field and Near Field Considerations

Recall that using the Runge—Kutta 2 integration scheme, we reinitialize the level funct
at all grid points twice per each time step. For this, we use the values of the level funct
obtained by integrating the governing equation to obtain the closed zero line:

$(x.y) =0. 3.7)

Then at each grid point, the level function is reassigned as a signed distance from
given point to the interface line. We solve the nonlinear equation (3.7) to estimate |
new locations for the generating points of the interface curve. Using their old locations
the initial approximations, we proceed in the gradient or counter-gradient direction ur
Eq. (3.7) is satisfied with a required reasonable degree of accuracy. For this, the non-r
values of the level function at the intergrid points are necessary. This, in turn, requires
two-dimensional polynomial interpolation @f(x, y). As mentioned above, in this work
fifth-order polynomials are used, which means 36 nodal values are required to estima
non-nodal value. In each of two Cartesian directions, we need to consider three grid po
to the left and three grid points to the right from the intergrid point under consideratic
This requirement means that the most remote grid point to be considered is located a
distance

dy = 24/ AX2 + Ay2 (3.8)

from the interface line, because three grid points to the left or to the right means ug
four intervals in each direction. With the interpolation scheme adopted, other grid valt
provide no contribution to the interface line location, and therefore the normal front veloc
F = Kss+ aUgg should be established for the grid points within a relatively narrow ban
region inside and outside the interface line, with a front velocity bandwidth of

—Op < d(X,y) < 0. (3.9

Thus, the second derivative of the curvature and the voltage with respect to the arclel
should be calculated within the region bounded by inequality (3.9). This means that
curvature and the voltage should be calculated through a larger region that is one
interval wider in each direction so that the curvature and voltage bandwidth are definec

—5dy

<P(X,y) < 5%. (3.10)

The implicit multigrid computational algorithm yields the voltage distribution at all gric
points, but as we see, not all of them are necessary. Since the numerical estimation o
curvature requires first and second derivatives of the distance function, Eq. (3.9) yields
bandwidth for the distance function calculation, giving a distance and function bandwidth

—3d,

N =¢o(X,y) = %db (3.11)
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Note that the bandwidth for the region, where the distance function should be calcula
is defined via the distance function itself. Thus, if at each time step we recalculate or
distance function remains unchanged according to condition (3.11) alone, then the dist:
function will be updated only within thiaitial near field region. The near field location will
not move. The grid points that belong initially to the far field region will remain outside th
near band forever, and the front motion will be confined.

To avoid such a “self-clinching loop,” we recalculate the distance function within tt
near field (Eg. 3.11) twice per each time step: half band inside the interface line and |
band outside. However, once pi§ time steps the level function is updated for all grid
points of the entire rectangular computational domain.

Due to the severe stability constraints of the explicit integration scheme for the four
order governing equation (2.29), the time step is small and proportional to the fourth po
of the cell size. Consequently, the change in the position of the interface line during «
time step is pretty small compared to the cell size. The generating points of the interface
at the next time step are located in close proximity to their previous positions. Therefc
N¢ = 20 usually suffices.

Since the boundary points of the computational box should always be far away from
void interface, those points belong to the far field region. Thus, with the use of the “far fiel
near field” concept, estimating the derivatives at the boundaries of the computational
(using the one-sided differences) becomes unnecessary. However, we still use the one-
difference approximations for the derivatives, in order to calculate the electric resistanc
the interconnect line. Estimation of the total resistance is described below.

3.4. The Interface Perimeter and the Confined Area

Assume the front is given by two parametric relationshipg) and fy(r), which may
be specified analytically or result from a spline interpolation.4. bé the arclength and
an arbitrary parameter. To obtain the area confined by a closed front, we pass from the
integral to the integral over the interface length:

A_//dA_Z/(fxdr—fydr>dr. (3.12)
A r

0 <r < 1is anormalized parameter which defines the limits of integration in (3.12) al
(3.13). The interface length

ds
smax:j{ds=/$dr =/\/(dfx/dr)2+(dfy/dr)2 dr. (3.13)

r

When fy(r) and fy(r) are given by cubic splines their derivatives are easily calculated.

3.5. Distribution of Electric Potential

The voltage distribution is a static boundary value problem whichis described by Eq. (1
We consider the case in whigh= ki, = constinside the closed front arld= k,,; = const
outside the front. Since the distance function is negative inside the front and positive outs
we getk = ki, for ¢ < 0 andk = ko for ¢ > 0. Formally, Eq. (1.5) requires the existence
of derivativesk, andky. For this purpose, we smooth out the conductivity distribution by
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hyperbolic tangent law,

kout + kin + kout - kin

2 2
whereg is a constant adjusting parameter. In this work, we use relatively large values
B, so thatk(x, y) approachegi, or ko, even at a small distance from the interface (rapic
change). Once we know the grid values of the distance function, we also know the ¢
values of the conductivity.

The boundary conditions aJ /dy = 0 at the horizontal boundaries of the computa-
tional box, and the voltage is preset along the vertical bounddiies:U~ = conston
the left boundary and) = U* = conston the right. We discretize Eq. (1.5) by central
differences with second-order accuracy:

0 (kaU) ~ kiva2Uirng — (Kip2g +Kio12)Uij +kic1y2 Vi1

k(x,y) = tanhBe (X, y), (3.14)

ax \ ax AX2
(3.15)

B (VY _ kiU = (K2 4 Kijoa2) Ui +kj-geUig
dy\ ay/ Ay? '
To calculate the local truncation error we expa&g, y) andU (x, y) in (3.15) into Tay-

lor series in the neighborhood of the central n@dg) while taking into consideration
Eq. (1.5):

£ (kU Jo%koU 9k 9°U 90U\ Ax2
"\ ax3ax T Tax2 ax2 | ax ax3 x4 ) 24
<83k au 3%k 92U ok 9°U 3*U ) Ay?

T 43— 44— 4 2k— | =2 3.16
ays ayJr y2 9y? + ay oy3 + oyt ) 24 ( )

The disadvantage of scheme (3.15) is that it requires the conductivity values in the mic

of the interval between grid pointki+1/> j andk; j+1,2. These values may be replaced by
averaging two neighbor grid points’ conductivities:

K+ ki1
2

Generally, the replacement in Eq. (3.17) cannot be applied for the central differences
the second differences a@(h?) before division byh?. However, for this case such a
replacement is justified due to the symmetry properties of the scheme (3.15), as sh
below. Therefore, the difference equation becomes

K12 = + O(h?). (3.17)

1 1
m[(kwl,i +kij)itrj — (Kigr + 2ki; + ki, pUij + (ki) + ki, jUi—1j] + Ay

X [(Kij+1 4+ KijUi j41— K jo1+ 2kij + ki j—DUij + (kij + ki j—0)VUi j_1] =0. (3.18)

To prove the validity of substitution (3.17), we estimate the local truncation error of t
difference scheme (3.18)

- (2%kou N 9%k 82U PPYL 9°U N 93U\ Ax?
'\ ax3 ax IX2 9x2 ax ax3 ax4 ) 12
(283k U 9% _akaU  a%U ) Ay?

ST Nl S S e A 3.19
ays3 3yjL ay?2 ayzjL ay ay3 + ay* ) 12 ( )
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We see that the local truncation error@gh?), i.e., the error order is the same as in the
original scheme (3.15) before substitution (3.17) was applied. With a rearrangemen
terms, Eq. (3.18) becomes

Kitaj + kij kij +ki—1,j kij+1 + ki kij +ki,j—1
Tk Ut e e e U T U
_( i+1,] +Ak)|(]2+ =Ll k"J+1+A;/J2+k"J 1>Uij =0. (3.20)

We now consider the derivative boundary conditions. Assumejthad andj = M are
the horizontal boundaries of the computational box. If we reqilifgdy = O atj = 0 and
j = M, the standard central difference yields the ghost values

Ui-1=Uio Uim+1=Uiwm, (3.21)

where the boundary is assumed to pass midway between grid points. The boundary conc
(3.21) is substituted into the difference equation (3.20) so that the ghost \lugsind
Ui m+1 are eliminated.

Leti = 0andi = N be vertical boundaries of the computational box. Then, the Dirichle
boundary conditions are

Uy =U~, Uyj=U". (3.22)

By solving set (3.20) with boundary conditions (3.21) and (3.22), we obtain the volta
at each node. The coefficient matrix is a band matrix with a half-band of viNdth1 or

M + 1. However, the band is sparse: each row contains only five nonzero coefficients.
linear set is solved using an efficient multigrid iterative procedure. Once the grid values
the voltage are established, the estimated total electric resistance of the interconnect i

ut—-u-

R= — 07—,
koutfh%dy

(3.23)

whereU* — U~ is the external voltage applied to the interconnégg; is the specific
electric conductivity of the material outside the front. The integral can be taken along ¢
line x = const located entirely outside the interface. We use both left and right vertic
bounds. The results, of course, should be the same. The coincidebce-efU ~ along
any line is only an indication of some kind of conservation form of the numerical schen
h is the length of the integration line, from the lower bound to the upper bound of tl
computational box. The resistance varies as the front evolves and it is independent o
applied voltage. We use Ohm'’s law to calculate the resistance.

Three-dimensional plots which describe numerical estimations for the voltage distribut
are presented in Figs. 3 and 4.

Different ratioski, = kot were considered. Fég, > kout we deal with a metallic island
inside the front, surrounded by a fairly poor conductor. Another dases ko t, describes
a void inside a good metallic conductor. Even for a vdig0, due to the underlayer’s
conductivity. A grid of size 106« 100 was used for the examples.

Figure 3 presents the distribution of the conductiwtgnd voltagelJ for the circular
irregularity. The circular superconductive island is considered in Fig. 3a, the circular v
in Fig. 3b. Voltage inside the island and along its boundary is almost constant.
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Conductivity Disioulion: K, m 1, K, = 1-6 Conductivity Distribuion: k = 108,k =1

FIG. 3. Distribution of electric potential through the rectangular plate with a circular irregularity: (a) circula
superconductive island; (b) circular void.

Conductivity Distribution: g, = 1, k= 10°8 Conductivity Diawibution: k= 107,k = 1

Fotential Distribution Polential Distrivution

FIG. 4. Distribution of electric potential through the rectangular plate with a triangular irregularity
(a) triangular superconductive island; (b) triangular void.
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Triangular island and triangular void topologies are presented in Figs. 4a and 4b, res
tively. The triangle is equilateral, and its axis of symmetry coincides with the direction
the electric field at infinity (far away from the triangle).

4. ELLIPTIC BOUNDARY VALUE SOLVER

The most computationally intensive part of the algorithm described in Section 3
step 8—solution of the elliptic boundary value problem at each time level. The finite diffe
ence discretization produces a linear system of algebraic equations. The associated n
is banded and very sparse—only five nonzero coefficients per row—nbut the bandwidt
O(/n), wheren is the total number of unknowns. Due to the high resolutions require
a direct solver is thus far too costly, and we need to resort to an efficient iterative sol
that will produce a solution with the required accuracy in j@sh) operations. Multigrid
methods provide us with the necessary performance.

4.1. Multigrid Techniques

Efficient multigrid solvers for elliptic boundary value problems were developed in tt
1970s (though conceived earlier), and the first comprehensive account of this approact
related algorithms appeared in [18]. The field then quickly developed and branched |
specialized methods, “automatic” solvers that could deal with anisotropic and disconti
ous coefficients, algebraic methods, applications to systems and to nonelliptic proble
and, later, nonPDE solvers. (For a basic introduction see [21]. A detailed exposition
advanced concepts appear in [24] and [19].)

The essential distinction between the various multigrid approaches for elliptic bound
value problems is in the choice of the intergrid transfers and the coarse-grid operator.
problems with smooth isotropic coefficients very simple choices perform most efficient
However, in the present application, where the coefficients are discontinuous in cer
regions of the domain, with jumps of several orders of magnitude, we must resort to s
cialized methods. This difficulty was first studied in [17]. These ideas were then put toget
in [22] in the form of a “black box” multigrid solver. This is the algorithm we employ here

4.2. The Black Box Multigrid (BBMG) Algorithm

The black box multigrid (BBMG) algorithm is an automatic approach to multigrid sc
lution of discretized elliptic boundary value problems. This means that the solver is ol
given the fine-grid data and the definition of the coarse grids (as well as an initial appr
imation to the solution), and it generates the intergrid transfers and coarse-grid opere
automatically. The underlying assumption is that the coefficients of the elliptic opera
may be discontinuous but the fluxes are smooth. Hence, this solver is very suitable for
present problem.

The BBMG method employs so-called Galerkin coarsening. This means that the coa
grid operator is defined by

LH = 1HLMp. (4.1)

(Note that this definition “makes sense,” as it can be thought of as transferring the coa
grid solution to the fine grid, applying the fine-grid operator, and transferring the result b
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to the coarse grid. Thug,” is indeed a coarse-grid approximatiorith) Furthermore, the
prolongation and restriction operators are chosen to be the transpose of each other:

I =00 (4.2)

Given (4.1) and (4.2), we find that once we choose a prolongation operator, the coarse-
correction process will be defined uniquely. The idea of the BBMG algorithm is to use t
fine-grid difference operator in the definition of the prolongation operafolWVe describe

it here for the 2D case, using the notation of [23] (see [22, 23] for more details). A verte
centered coarsening is used, and the coarse-grid mesh is uniform with mesh intervals
are twice the size of those of the fine grid. We denote fine-grid and coarse-grid indices,
spectively, by F, JF) and(IC, JC). Given the choice of coarse grid, roughly one quarte
of the fine-grid points coincide with coarse-grid points. At these points we simply define

(IEUH)IF,JF = viC ¢

But for the remaining fine-grid points, the fine-grid template (stencil) is employed in the pr
longation. Suppose that the fine-grid paihE + 1, JF) lies midway between coarse-grid
points(1C, JC) and(IC + 1, JC), and that_" has at(I F + 1, JF) the templaté

~NW —N —-NE
-W C -E|. (4.3)
~SW -S -SE

Then we define

(1) _ (NW+W + SWujt 5o + (NE+ E + SBUt, 3¢
H IF+1,JF C—_N-S :

(4.4)

Here, the columns of (4.3) have been summed to average out the vertical depende
A similar formula holds for the fine-grid poirtl F, JF + 1) that lies midway between
coarse-grid pointél C, JC) and(IC, JC + 1) The fine-grid values at the remaining points,
(IF +1, JF + 1), are now determined so as to satisfy the equation

(LMo

IF+1,JF+1 0. (4.5)

4.3. Application of the BBMG Algorithm to the Time-Dependent Problem

We have not yet discussed how we choose our initial approximation to the solutior
each new time level. We followed the procedure of [20], which defines a so-called modifi
F-cycle, which applies the well-known full multigrid (FMG) algorithm while exploiting
the solution of the previous time level to obtain a good first estimate. This is equivalent
performing an FMG algorithm for only thehangein the solution over each time level. It
avoids excessive accumulation of error due to the truncation of the iterative process, wi
is an essential property, given the very large number of time levels. The modified F-cy
is now described.

3 This means that the equation at ngdi€ + 1, JF) is

h h
_NWLFF.JFJrl - NUIF+1.JF+1 -N EL{RHZJ F+1° 7" SEI“TF+2.JF—1 = fIF+1.JF‘
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1. Beginning with the fine-grid solution of the previous time level, transfer residuals
the right-hand sides of progressively coarser grids, until right-hand sides have been def
on all the grids.

2. Solve the problem on the coarsest grid (directly or by repeated relaxation). Prol
the solution to the second-coarsest grid.

3. Perform one V-cycle on the second-coarsest grid, and prolong the resulting solu
to the third-coarsest grid.

4. Continue this process until the finest grid is reached, and perform one (or more)
cycles on the finest grid.

In all our cycles we employed the BBMG solver withe = 2 andvpest = 1.

4.4. Planned Optimization

Although the multigrid algorithm is optimal as an elliptic boundary value problem solve
the fact that it is employed at every time level makes it still the most computation-intens
part of the algorithm. We therefore plan improvements which we expect will reduce t
overall cost dramatically.

e Ateach time level we effectively solve for the incrementinThe physical changes in
U are substantial near the interface, where the coeffikien{l.5) changes discontinuously.
But away from this region the change per time level is slight (given the small time step
More important, this change is extremely smooth except near the interface. Therefol
can be approximated well on a far coarser mesh than that used near the interface.
can be exploited by employing local refinement techniques. However, such techniques
relatively quite complicated to implement in the framework of BBMG algorithms. Hence w
shallinstead only employ local processing (near the interface) during most of the integrat
while freezingU far away from the interface. This procedure is justified by the fact that tr
time-step size is controlled by the time-dependent equation (2.2), and it is far smaller t
necessary for accuracy 0f Only once every few time steps do we actually need to emplo
the full BBMG solver.

e A second approach for the optimization of the solver is to employ a semi-implic
time-stepping approach. The principal part of (2.2) is the biharmonic operator (as s
by (2.29)). This term can be treated implicitly by employing a fairly standard multigri
algorithm. This would allow us to use much smaller time steps. We can also treat other te
implicitly, including nonlinear terms (employing the nonlinear full approximation schem
multigrid method). We expect these changes to increase the computational efficiency
significantly.

5. SIMULATION RESULTS

In this section, we present the results for two sets of simulations. The first set displ
interface motion under the surface diffusion only. The second set combines the sur
diffusion with electromigration forces. Different initial configurations are considered [1]

All the simulations were executed on one processor from a DEC AlphaServer 880(
300, with 8 CPUs, 300 MHz, 256 MB of memory, and a DEC-UNIX operating system.

5.1. Motion under Surface Diffusion

Inthis case, the steady-state configuration of the front is circular, independent of its ini
shape. The area confined by the closed front remains constant for the duration of the mo
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Elliptic initial front. Consider an elliptic front

X2 y2

with the semi-axea = 2 andb = 1. Equation (5.1) is presented in the parametric form as
fx =acosr, fy,=bsinr, 0<r <2x. (5.2)

The initial curvature is

fyfe— tfy ab
(f,2+ f§2)3/2 (@2sirfr + b2 cor)3/2

K(r) = > 0, (5.3)

where prime denotes derivative with respect to parameferwe see, the ellipse curvature is
always positiveK max = a/b?, Kmin = b/a?. The area confined isab, and the arclength is

s(r):/q/f;2+ f;2d2=/\/a23inzz+b2coszdz= a[E(e) — E(@/2—r, 8)],
0 0

(5.4)

wheres = /a2 — b?/aisthe eccentricity of the ellipse aktis the complete elliptic integral
of second kind. The entire interface length & ¢). Derivatives of the curvature with re-
spectto arclength can also be presented as a function of the parariétefirst derivative is

dK/dr 3/2ab(@? — b?) sin
Ks(r) = = — 55
(1) ds/dr (@2sirfr + b2 co@r)3/2 (-:5)
4/6ab?(a? — b?)(a? — b?/3)
[Ks|max = 3" (5-6)
(@ + b?)\/a2 — b?/3 — (a2 — b?)¥/7?]
The second derivative is
K 3ab(a? — b?) 2cos2 3(@? — b?)sirf 2r 5.7)
s 2 (@2sirfr +b2co2r)/2  (a2sirfr + b2cogr)¥2|
The minimum (negative) value is
- a@? - b?
KA = _ST' (5.8)
The maximum positive value df g is reached at = r*,
2 _ h2)2 2h2 __ 2 2
oS3 — 7\/(a2 — b?)2 4 116/245a%b2 — 3(a® + b )’ (5.9)

4@z —b?

provided the eccentricity exceeds 2+/19. For the stated values of semi-axes, the relation
ships forK, Ks, andKgs are plotted versus arclength in Fig. 5. Results of the numeric:
simulation are presented in Fig. 6.
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Step 0, S = 9.6884, A = 6.2832, CPh= 0.0 Curvature

> 0
IR ST
_2 .....
-3
_a : ! : f
-4 -2 Q 2 4 o} 2 4 6 8 10
X Arclength s
Derivative of Curvature Second Derivative of Curvature
3 5 T

_a3 N N . _15 . -
0 2 4 6 8 10 0 2 4 6 8 10
Arclength s Arciength s

FIG. 5. Elliptic front, its curvature, and derivatives of curvature.

Note that the interface contour reaches a steady state after 30,000 steps or 1.4 h CPU
Recall that the PDE under consideration is of fourth order in space. For the second-o
PDE with the same initial configuration and the samex<660 grid, it took less than half a
minute to solve the problem; see Fig. 2. The interface configuration is set by 500 genera
points. For the spatial resolutidn= min(Ax; Ay), the time step is bounded by stability
requirementsAt = Ah? for the second-order equation and = Ah* for the fourth-order
equation. We used = 1/8 for all two-dimensional simulations to obtain stable results
Larger values of. led to instability.

As part of validating our program we also analyzed the evolution of an ellipse with ser
axis under diffusion only with a semi-axis ratio of 10, in order to compare with [28] (Fig.
p. 1483). Our contours are drawn at the same physical problem times (see Fig. 7). It
done on a 14& 148 grid, and the interface was specified by 400 generating points. Abc
1 million steps were required to achieve steady-state.

Triangle with rounded corners.The polygons that were considered in this study ha
rounded corners. The rounded equilateral triangle is shown in Fig. 8 and can be spec
parametrically as

fx = (2+cosr)sinr, f,=—(2—cosrycosr —1/2, 0<r <27x. (5.10)
The interface curvature is

2(1—cos3) <K <4 (5.11)

K= ——x=5
) (54+4co0s3)%2" ~~
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FIG. 6. Evolution of initially elliptic front under surface diffusion forces.

Initial: P = 4.0630, A = 0.3142, Final: P = 1.9896, A = 0.3150

_———

- v\\\\\\

Plotted each 40K Steps

FIG. 7. Evolution of highly eccentric elliptic front under surface diffusion forces.
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Step 0, S = 13.3646, A= 10.9954, CPh= 0.0 Curvature
4 T T T

5
X Arclength s

Derivative of Curvature Second Derivative of Curvature
50

L

Kss

- - -100
5 10 15 0 5 10 15

Arclength s Arclength s

FIG. 8. Triangular front, its curvature, and derivatives of curvature.

The arclengtls(r) is given by
.
s(r) = /«/5+4cos3zdz= 2E(3r/2,2v/2/3). (5.12)
0

The entire perimeter is 12(2+/2/3) ~ 13.368. The curvature derivatives are:

_ 6(11—2cos3)sin

Ks = , |Ks] 13993 5.13
* (5+4cos3)3 IKsl < (-13)
1 4 — 54 2
Koo — 8(88+45cos3 — 54 cos 6 + 0059)7 _234< Ky < 576028 (5.14)
(5+4co0s3)%2

The area confined by the front is

2
1 1 ) ) Tn
A:E%(fxdfy—fydfx)ZE/(fxfy—fyfx)dl’=7~ (5.15)
0

A grid of size 60x 60 was used. The relationships for the curvature and its derivatives ¢
plotted vs arclength in Fig. 8. Results of the numerical simulation are presented in Fig
The simulation took 40,000 steps (1.8 h CPU time) to reach a steady state. It is interes
to note that the initial curvature is nonnegative everywhere and vanishes at three disc
points only (at the midpoints of the triangle sides). However, the curvature becomes loc
negative as the front moves. Four hundred fifty points were used to describe the inter



346 AVERBUCH ET AL.
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FIG. 9. Evolution of initially triangular front under surface diffusion forces.

configuration. The center of gravity of the figure given by Eq. (5.10) is located at the orig
The side of the regular circumferential triangle (with sharp corners)/(8.3he area of
the figure makes up 2854/3 ~ 94% of the triangle area. The other missing 6% is due
to rounded corners.

Square with rounded cornersThe parametric description of a square with roundec
corners, illustrated by Fig. 10, is given by

_ (5—cos2)cosr _ (5+cos2)sinr

fy = 1 , fy 1 0<r < 2m. (5.16)

The initial curvature is

Ky = 2Sm2 <K <4, (5.17)

(4—3sirf2r)¥2’ ~—
The arclengtls(r) is given by

s(r) = ;/\/4— 3sirfzdz= gE(Zr, V3/2). (5.18)
0
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Step 0K, S =7.2664, A = 3.8288, CPh = 0.00 Curvature
2 T T T T T

% Arclength s

Derivative of Curvature Second Derivative of Curvature

2 4 6 8 0 2 4 6 8
Arclength s Arclength s

FIG. 10. Square front, its curvature, and derivatives of curvature.

The complete length of the interface iE6/3/2) ~ 7.2666. The confined area is3832,
and it takes approximately 96% of the area of the circumferential square with sharp corn
The derivative of the curvature with respect to the arclength is

. 438sin4 —3sing
3 (4—3sirf2r)3

. |Ks| < 16.683 (5.19)

S

The second derivative of the curvature is

Koo — 16 456+ 335cos4 — 288cos8 +9cos 12
®9 (4 — 3sirf 2r)"?

, —312888< Kss < 78271

(5.20)

The curvature and its derivatives are plotted vs arclength in Fig. 10. Results of the numel
simulation are presented in Fig. 11. Four hundred points were used to specify the inter
curve on a grid of size 6@ 60. The simulation took 20,000 steps and 15 min CPU time t
reach a steady state.

Butterfly contour. The butterfly contour, plotted in Fig. 12, is a solution for the ordinary
differential equations

dfx Zy dfy zZy

ds \/m ds VZ+7Z

(5.21)



348 AVERBUCH ET AL.

Step 1K, 5=7.0806, A = 3.8295, CPh = 0.02 Step 2K, $=7.0024, A = 3.8299, CPh = 0.03
2 T T T

2

15

Step 20K, S =8.9373, A =3.8298, CPh =0.25
2 T T T

FIG. 11. Evolution of initially square front under surface diffusion forces.

wheres is the arclength and,, z, are functions defined as
zo=—f (12 + f2+a%), z = f2(f2+ 7 —a%). (5.22)

We seta = 1 and used the initial conditions sit= 0 : fy = 0 and f, = 0.2. The interface
length is 6.3818, and the confined area is 1.6108. The curvature and its derivatives

Step 0K, S =6.3818, A = 1.6108, CPh = 0.00 Curvature
1 T T T T T T 10 T
0.5 |
> 0 x
-0.5
-1 i i . i i -10 i i H N L - |
-2 -1.5 -1 -0.5 0 0.5 1 15 2 0 1 2 3 4 S 6 7
X Arclength s
Derivative of Curvature Second Derivative of Curvature
60 T T T T 2000 T
40 : : 1500
20p] 1000}
2 o : & s00
20 / : b 0
—40 : -500
-60 i i -1000
0 1 2 3 4 5 6 0 7
Arclength s Arclength s

FIG. 12. Butterfly front, its curvature, and derivatives of curvature.
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Step 1K, S = 6.3591, A = 1.6118, CPh =0.04 Step 10K, S = 6.2564, A = 1.6108, CPh = 0.30

Step 50K, § = 5.9811, A= 1.6077, CPh = 1.42

Step 500K, 8 =5.2172, A = 1.6027, CPh = 13.85 Step 1.0M, S = 4.8820, A = 1.6023, CPh = 27.55

Step 2.0M, S =4.5642, A=1.6018, CPh=55.21

FIG. 13. Evolution of butterfly front under surface diffusion forces.

plotted vs arclength in Fig. 12. Results of the numerical simulation are presented in Fig.
A 100 x 100 grid and 1000 points that specify the interface line were used. Note that dur
the evolution, the butterfly (see Fig. 12) transforms first into the Cassini oval, then evol
into the ellipse, and finally reaches a steady-state circle.

Groove evolution. We consider the evolution of a long groove with rounded ends; se
Fig. 14. Note that the rounding curve is not a circular arc. The circle is inappropriate
this simulation. The reason is that at the point where the circular arc joins the straight i
the curvature is discontinuous and jumps from zer&te- 1/radius. Thus, the curvature
is a step function, its derivative with respect to arclength is a delta function, and higl
derivatives are delta functions of higher orders. Such interface configurations are ustL
treated with essentially nonoscillatory (ENO) schemes. An ENO scheme is not used h
Therefore, we apply a special transition curve. Its curvature is a polynomial function of 1
arclength. At the joint points, the curvature and its derivatives (up to the second order
even higher) all vanish, to match those of a straight line. For the groove considered,
straight portions are of length 20, the transition curves are of length 8, and the groove w
is 2.4. The maximum curvature of the transition curve is 1. The interface perimeter is
and the confined area is approximately 64.6. Although the slope angle and its derivat
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Step 0K, S =56.0000, A = 64.6044, CPh = 0.03 Curvature
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FIG. 14. Groove front, its curvature, and derivatives of curvature.

are continuous, they vary rapidly with the arclength, and the corresponding plots in Fig.
bear a resemblance to delta functions of different orders. The curvature and its derivat
are plotted vs arclength in Fig. 14. Results of the numerical simulation are presente
Fig. 15.

A 200 x 200 grid was used. Six thousand points were used to specify the interface li
The groove does not split into pieces as it evolves. It remains a unified, simply connec
region.

Dumbbell evolution. In order to check accuracy and convergence in time, a dumbbe
problem was run using two space resolutions: a coarse grids 100, and a fine grid, 150
150. A “regular” time step of = 1/8 was used with both grids.

The evolution scenario for the coarse grid and regular time step (CFL) is presentec
Fig. 16. The dumbbell evolved to a perfect circle. The fine grid with the regular (CFL) tin
step accumulated a significant error, after a large number of steps, and the computation
stopped before reaching steady-state.

The same fine-grid computation was repeated with a time step twice as small. The ¢
lution scenario was visually the same as that for the coarse grid and regular step; it reac
a steady state at the same problem time.

The area confined by the closed interface should remain constant and the error in
measure can be used as an indicator for the accuracy of the computation. Two plots are sl
in Fig. 17. The upper plot shows the effect of the mesh resolution when using the se
A = 1/8. The time axis for both graphs is normalized in such a way that it is proportional
“problem time,” i.e., it corresponds to the step of the coarse grid, while the fine-grid ste
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Step 30K, S =52.0012, A = 64,5537, Step 100K, S = 47.4745, A = 64.4835
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FIG. 15. Evolution of long groove under surface diffusion forces.

are adjusted by a factor of 1.54. The lower plot shows the effect of the time step when u:
the same fine grid. The time steps correspond t01/8 andA = 1/16. The time axis is
again normalized accordingly.

Topological changes.In order to check the ability of the present formulation to follow
topological changes we performed two experiments.

The first involves the merging of two long ellipses of aspect ratio 10 with centers 0.
apart; see Fig. 18. The ellipses become fatter and eventually touch at the symmetry
At this point the parametrization of the two interface curves is changed to a single cur
Subsequently, the merged void evolves to a perfect circle.

The second experiment involves the same two long ellipses but this time with cent
0.32 apart; see Fig. 19. The ellipses first touch at two points off the vertical symmetry a
Now there is a merging of the two outer parts of the curves and simultaneously the merg
of the inner parts of the curves and the splitting of an inner island of material. Subsequel
both the merged void and the inner island evolve to perfect circles. The final configurat
is multiply connected.
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FIG. 16. Evolution of dumbbell front under surface duffusion forces.
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FIG. 18. Merging of two elliptic fronts under surface diffusion forces, resulting in a simply connected regior
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FIG. 19. Merging of two elliptic fronts under surface diffusion forces, resulting in a multiply connecte
region.
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5.2. Motion under Surface Diffusion and Electromigration Forces

In this section we examine three major cases of ratio between field forces and diffus
forces. In our study they are classified as weak, moderate, and strong electric fields.

The interface motion under governing equation (2.2) was studied, by varythg ratio
between the electric field forces and the surface diffusion forces.

Weak electric field. In this series we assume= 1, which corresponds to a relatively
weak field. Due to the field forces, the void migrates in the direction of the field, but since t
diffusion forces prevail, the steady state configuration of the void contour is a circle. For
the tests, the conductivity of the voiddg = 10~ while the conductivity of the surrounding
material iskoy; = 1. The gradient of the external voltage (in thdirection) was assumed
to be one. Figs. 20-29 present the void initial configuration, evolution, and migration. F
the initial configuration, we present the voltage and its derivatives vs arclength of the v
and the resulting normal velocity of the front. We also specify the total electric resistar
of the interconnect which is given by Eq. (3.23).

First, migration of a circular void was studied. The initial circular shape does not chan
According to Eqg. (2.20), the velocity of the migration of the circular voidi&€Z R, where
Ris the void radius anét is the field strength.

Step 0K, S = 9.6884, A = 6.2832, CPh = 0.00 Step 1K, 8 =9.5164, A = 6,2833, CPh=0.11
4 4

& -4 -2 0 2 4 6 6 -4 -2 0 2 4 6
X X
Step 5K, § = 9.1675, A = 6.2807, CPh = 0.53 Step 10K, S = 8.9736, A = 6.2776, CPh = 1.02
4

FIG. 20. Evolution and migration of elliptic void in a weak electric field (with the large axis of the ellipse
coinciding with the field direction).
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Potential vs Arclength. Resistance = 1.6552

Q 4 4 6 8 10
Arclength s

Second Derivative of Potential

Arclength s

FIG. 21. Distribution of electric potential, its derivatives, and normal velocity for elliptic void (with the large
axis of the ellipse coinciding with the field direction).

Step 0K, S = 9.6884, A = 6.2832, CPh = 0.00

Step 20K, S = 8.8859, A = 6.2710, CPh = 2.08
4

P NS OO

-4

FIG. 22. Evolution and migration of elliptic void in a weak electric field (with the large axis of the ellipse

normal to the field direction).
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4 6 8 10
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Front Normal Velocity
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Step 1K, S = 9.5169, A = 6.2826, CPh =0.12

Step 10K, § = 8.9759, A =6.2778, CPh = 1.08
4

Step 40K, S = 8.8665, A = 6.2558, CPh = 4.06
4 .
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Derivative of Potential

Potential vs Arclength. Resistance = 1.8322

10

0 2 4 [} 8 10 0 2 4 6 8
Arclength s Arciength s

Front Norma! Velocity

Second Derivative of Potential

Kss + alpha Uss

0 2 4 6 8 10 Q 2 4 6 8
Arclength s Arclength s
FIG. 23. Distribution of electric potential, its derivatives, and normal velocity for elliptic void (with the large

axis of the ellipse normal to the field direction).

Step 0K, S = 13.3647, A = 10.9955, CPh = 0.00 Step 500, S = 12.9188, A = 11.0014, CPh = 0.06
4 4

Step 5K, S = 11.9665, A =11.0473, CPh = 0.69
4

FIG. 24. Evolution and migration of triangular void in a weak electric field (with the large axis of the triangle
coinciding with the field direction).
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Derivative of Potential

Potential vs Arclength. Resistance = 1.9699

0 5 10 15 0 S 10 15
Arclength s Arclength s

Second Derivative of Potential Front Normal Velocity

Kss + alpha Uss

-100 - :
0 5 10 15
Arclength s

Arclength s

FIG. 25. Distribution of electric potential, its derivatives, and normal velocity for triangular void (with the
large axis of the triangle coinciding with the field direction).

Step 500, § = 12.9229, A = 10.9992, CPh = 0.06

Step OK, S = 13.3648, A = 10.9955, CPh = 0.00

4Step 10K, S = 11.7782, A = 11.0028, GPh = 1.05
2t :

> 0
S .
S E— 0 2 4 6 deTT4 0 2 4 6

FIG. 26. Evolution and migration of triangular void in a weak electric field (with the large axis of the triangl
normal to the field direction).
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Derivative of Potential

Potential vs Arclength. Resistance = 1.9695

o] 5 10 15 10 15

Arclength s Arclength s

Front Normal Velocity

Second Derivative of Potential

Kss + alpha Uss

- . -100
0 5 10 15 0 5 10 15
Arclength s
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FIG. 27. Distribution of electric potential, its derivatives, and normal velocity for triangular void (with the

large axis of the triangle normal to the field direction).

Step 0K, S = 7.2663, A =.3.8288, CPh = 0.00 Step 1K, S = 7.0831, A =.3.8295, CPh =0.13

-3 -2 -1 0 1 2

Step 5K, S = 6.9437, A =.3.8302, CPh = 0.57

Step 2K, S =7.0049, A =.3.8299, CPh = 0.25

FIG. 28. Evolution and migration of square void in a weak electric field.
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Derivative of Potential

Potential vs Arclength. Resistance = 2.1188

4 8
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Second Derivative of Potential Front Normal Velocity
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FIG. 29. Distribution of electric potential, its derivatives, and normal velocity for square void.

Step 1K, $ = 6.2738, A = 3.1318, CPh = 0.19

Step 0K, S = 6.2832, A = 3.1416, CPh = 0.00

Step 2K, S = 6.2643, A =3.1221, CPh = 0.38

FIG. 30. Evolution and migration of circular void in a moderate electric field.
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Migration and evolution of an elliptic void is simulated in Fig. 20. The larger axis of th
ellipse is parallel to the strengthof the external field. Figure 21 presents the voltage, it
derivatives, and the normal velocity of the initial front. A similar problem, where the large
axis is normal to the field strength, is presented in Fig. 22. The initial characteristics of 1
front are presented in Fig. 23.

It is interesting to note that in the first case, the initial resistance of the interconnec
less than its steady state resistance. In the latter case, the initial resistance exceeds t
the steady state.

Next we consider migration and evolution of a triangular void. The triangle is equilater
with rounded corners. We distinguish between two cases: 1. the axis of symmetry of
triangle is parallel to the elective field (see Fig. 24 for the evolution and motion and Fig.
for the initial characteristics); 2. the axis of symmetry is normal to the field (Figs. 26 and
respectively). The motion and initial characteristics of a square void with rounded corn
are presented in Figs. 28 and 29.

Step 0K, S = 6.2832, A = 3.1416, CPh = 0.00 Step 1K, S = 6.2821, A = 3.1401, CPh = 0.21
4

B -4 -2 0o 2 4 6 s -4 -2 o0 2 4 6

-2

4 . . " : N _4

-6 -4 -2 [s] 2 4 ] -6 ~4 -2 [¢] 2 4 6
X x
Step 9K, S =6.2948, A =3.1370,CPh = 1.8 Step 10K, S = 6.3035, A = 3.1386, CPh = 2.10
4
P L O S PR PP D S S P PP P ST R SERREE
O IR T o W O
) : -2
- -4
o4 2 0o 2 4 5 4 -2 o 2 4 8
x X

FIG. 31. Evolution and migration of circular void in a strong electric field.
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Moderately strong field. Motions caused by a strong electric fi¢td > 1) were consid-
ered. Itis known [2] that when the paramategxceeds a definite critical value, the circular
equilibrium form of the void boundary becomes unstable, and other (stable) equilibrit
forms evolve. Kraft and Arzt [25] found that electromigration-induced failure of metalli
interconnects in integrated circuits occurs when rounded voids deform into narrow slit-|
voids, which are often transgranular. The mechanism of this shape change is examine
[25] where the numerical simulation is applied for both finite element and finite differen
approaches. These authors use a finite element method to find the distribution of the
sity of electric current and temperature in the vicinity of the void. The authors take ir
consideration the nonuniform Joule heating and the dependence of the surface diffu
coefficient on the temperature.

When we consider the motion of a void in a strong electric field, the computatior
procedure needs additional work. As the number of iterations increases, the location o
generating points on the interface line becomes more and more nonuniform. Even whel

Step 11K, S = 6.3198, A = 3.1426, CPh = 2.31 Step 12K, S = 6.3695, A = 3.1562, CPh =252
4 X T T .

85

:

B : : . : :
% -4 -2 o0 2 4 6

6

X X
Step 14K, S = 15,5632, A = 3.5367, CPh =2.97 4Slep 15K, S = 25.4745, A = 4.6030, CPh = 3.21
4 T " " i

-6 -4 -2 0 2 4 6

FIG. 32. Evolution and migration of circular void in a strong electric field (continued).
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initial configuration of the zero level line is generated by equally spaced points (or nea
equally spaced), after some time there is a high density of generating points within relativ
short sectors of the interface line, and there are long sectors where these points are sy
To overcome this problem, a special procedure was developed to redistribute the gener:
points in a uniform equally spaced manner. This redistribution is accomplished by spl
interpolation. The redistribution procedure should not necessarily be applied at each t
step. It may be used, say, every 10 or 100 time steps, depending on the “condensation
of the generating points.

a = 20 is used to simulate a moderately strong field. In this case, the round void dt
not remain round. It approaches a special steady state configuration where the arc of ir
curvature is placed in the “plus” side of the electric field. On the other hand, the arc o
reduced or even negative curvature is placed in the “minus” side of the field. Results of 1
numerical simulation are presented in Fig. 30.

Step 0K, S = 10.9890, A = 7.6577, Step 1K, S = 11,1420, A = 7.7264,
4 N T T R A—
2 2hi RS .
-0 > ol R ' ....... e
2 w2 ,,,,,,, . SIS R ERERS PRPPR
" : : : : : » ; :
-6 -4 -2 0 2 4 [ -6 -4 -2 0 2 4 6
X
Step 3K, S = 11,1660, A = 7.7609, Step 10K, S = 11,3593, A = 7.8886,
4
P S O L PO UPOU PP DY PR N DU AU SRS SO SO
SN S SIS0 N SO SO SR SR PR ATEUUUE UO U SP0 U SN
pbd e AN P . Y e PR I P
_4 B . N N . " . N . N N
6 -4 -2 0 2 4 6 6 -4 -2 0 2 4 6
-4

-6 -4 -2 0 2 4 6

FIG. 33. Evolution and migration of rectangular void in a strong electric field.
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Extremely strong field.« = 50 is used to simulate an extremely strong field. Initially,
the void reaches the shape described above for the moderately strong field. But now tF
not a steady state. The void continues its evolution. It deforms and reaches a two “fing
shape, exactly as was shown in [2]. Then, a third “finger” appears. Finally, it splits ir
several parts. Thus, for a very strong field, sometimes the steady state does not exist
for large voids, and exists only for small ones. Stability depends on the area of the vi
Results of the numerical simulation are presented in Figs. 31 and 32.

As we see, there is a considerable loss of accuracy at the last stages of the evolution b
the split of the void occurs. At these stages, the curvature varies rapidly within a wide ral
which resembles a delta function. Its derivatives are delta functions of higher order. A
result, the area confined by the void varies, although it should remain constant follow
the material conservation law. In our numerical example the area more than doubles be
the split. We conjecture that a finer spatial grid and a smaller time step may reduce the e
Note that even with this error, the general picture seems to be correct.

Dynamics of migration and evolution of the rectangular void in the extremely strong fie
is presented in Fig. 33. The initial sizes are 1 and 2 (1 in the field direction and 2 in 1
normal to the field direction). The corners of the initial rectangle are rounded.

Motion of the triangular void is presented in Fig. 34. The initial shape of the void
an equilateral triangle with rounded corners. Its axis of symmetry coincides with the fie

Step 0K, S = 13.3647, A =.10.9955, CPh = 0.00 Step 1K, S=14.1479, A=10.9631, CPh = 0.20
4 .

FIG. 34. Evolution and migration of triangular void in a strong electric field.
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FIG.35. Separation of dumbbell void in a strong electric field. The grid isxé80 with 400 generating points
for the interface line.

Equivalent Interface Line

FIG. 36. Equivalent interface line for diffusion component of velocity for upper part of dumbbell.
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direction. The rounded corner, located on this axis, points toward the negative of the exte
voltage. Figure 35 shows a separation example which is a motion under both diffusion
electric field forces (if there is diffusion only, then no separation occurs, as any initial she
becomes circular).

The interface in the dumbbell example is symmetric. At the bottleneck, the level functi
ceases to be a distance function because two branches become too close to each othe
leads to a distortion of the level function since we have overlapping of two different distar
functions. In order to calculate the fourth derivatives numerically we need at least five ce

To avoid this situation, the lower branch of the dumbbell was replaced by another cur
This curve was obtained with a tangent line to the circles of the dumbbell in the low
half-plane, as demonstrated in Fig. 36.

This curve was used to calculate the diffusion component of the velocity for the upj
half-plane. It is correct because the diffusion component at the given point of the interf;
depends only on local conditions, i.e., on the shape of the interface near this point. Or
other side, this modified interface does not include a bottleneck and has no problems
the distance function overlap.

Hovewer, this is not true for the electric field component of the velocity. Distribution
the voltage and its derivatives at the given point depends on the values of conductivity a
points of the domain, so the true shape with the bottleneck is used to calculate the ele
component of the velocity. However, the distance function is not needed for this elec
component, so the overlap problems do not arise. After we find the interface line on e
time step, the true shape is an upper brandymmetric lower branch.

6. CONCLUSIONS

A computational methodology was developed and tested for the simulation of elect
migration phenomena in the interconnects of microelectronic circuits. A void motion w
studied first under surface diffusion only, and then under both diffusion and electric fit
forces. Under pure surface diffusion, any initial configuration of the front reaches a ste:
state which is in a circular form. The area, confined by the closed front, remains cons
during the evolution. In the weak electric field, an arbitrary initial shape becomes a circ
and in addition, the void moves along the field direction. The superconductive meta
island does not move. Under the strong electric field, the circular equilibrium form of t|
void becomes unstable and it is transformed into slit-like configurations.

In order to solve the fourth-order governing PDE a finite difference discretization
space and a Runge—Kutta 2 procedure in time were applied. The low order of Runge—K
scheme is justified since the value of the time step is fairly small for stability requiremer

The initial location of the front should be specified to the governing PDE as a finite set
discrete points which generates a closed curve. However, there are no boundary condi
at all. Instead the forward and backward differences are applied to approximate the sp
derivatives along the boundaries of the computational box.

To solve the static elliptic PDE for the voltage distribution, a finite difference schen
was applied. The resulting set of linear equations which have a sparse band matrix is sc
by a special multigrid procedure, which speeds up the computations.

Variation of the total resistance of the interconnect was examined. This value can
further used as an interconnect failure criterion.
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A number of original analytic relationships were developed for the curvature and
derivatives, which simplify the computational procedure.

APPENDIX: DERIVATION FOR THE TWO-LAYER CASE

We consider a conducting strip made of a thin metal film, attached to a strip of nonz:
conductivity substrate. The metal film may be continuous or it may be made of conduct
patches with voids in between. We allow the metal film and substrate to have varia
thickness. In the present formulation we neglect the interface resistance. The strip is atta
to electrodes at its ends. We may want to compute the total resistance of the strip as
as the local field strength which determines the resulting electromigration. This is a m
realistic model as opposed to the model assuming a zero-conductivity substrate. This m
also allows us to consider the behavior of a metal film with varying effective thickness
no extra cost.

We will consider a two-layer case where the subscript 1 designates the top layer (m
film) and the subscript 2 the substrate. The interface between the layers is dejiated.

Let H be the scale of the elevations andllebe the horizontal scale. We will assume that
¢ = H/L « 1 and that the slopes of,i =0, 1, 2, are small.

oc=0
— ~ hi(X,y)
01(X, y)
n
o hoxy)
o2(X,y)
pe—— e )|
o =0.
Ohm'’s law implies
j =0oE, (7.23)
a 9 0
E=-V here V= | —, —, — |. 7.24
3¢, where V3 <8x’8y’ 82) (7.24)

Here,j is the electric current density vectdt,is the electric field vectop is the electric
potential, andr is the material conductivity. We assume thais independent of in each
layer, i.e.,o1 = 01(X, Y), 02 = 02(X, ).

For steady fields, Maxwell's equations with vanishing space charge yield

Vi-j =0, (7.25)
hence,
Vs (0E) = V3 (0Vap) = 0. (7.26)
In the scaled coordinatéX, Y, Z) = (x/L, y/L, z/H), Eq. (7.26) becomes

) AN
eV (0V9) + oo (aa—> =0, (7.27)
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where

a 0
V = Vhorizontal = W, W .

The following relations describe normal and tangential continuity at the interface betwe
the layers:

V3-(0E) =0= n- (02E; — 01E1) =0, (728)
VaxE=0=nx (E; —E;) =0, (729)

wheren is a vector normal to the interface. Hence,
N - (02Vsag2 — 01Vap1) = 0, (7.30)
and
N x (Vapz — Va¢1) = 0. (7.31)

For simplicity we will assume that the material interfdggs horizontal az = 0.

oc=0
~— T —" hi(x,y)
o1(X, y)
z
ho(X,y) =0
o2(X, y)
— " haxy)
o =0.
We therefore have & = 0,
ap1 02
——(X,Y,0) =0,—(X, Y 7.32
Glaz(, ,0) 0282(, ,0), (7.32)
Vo1 = Vo (7.33)
The top and bottom surfaces are given by
Si(X,y,20=0=2z—-h;(X,y) = H(Z — Hj (X, Y)). (7.34)
Since
¢ V3¢ V3§
on VeS|

then at the top and bottom surfaces

¢ Xy
57 3¢ - V2 J<L,L), (7.35)



368 AVERBUCH ET AL.

or, equivalently,

99

37 =¢%V¢ - VH;. (7.36)

We can perform a singular perturbation analysis by assuming the expansion
o
P(X.Y.2) =) 2™ (X.Y. 2). (7.37)
m=0

where thep® are functions of orde®(1) in e. Substitution of (7.37) into (7.27), setting
¢ = 0, produces

32¢(0)
@ = AZ + B, (layer 2, (7.39)
»© = A1 Z + B (layer D). (7.40)
By (7.36) we have at the top
960
% =0= ¢ = By(X,Y), (7.41)
and at the bottom
369
g’; =0= ¢\ = By(X, Y). (7.42)

Therefore the continuity condition (7.33) implies (apart from a moot constant)
B, = By. (7.43)
Thus, at this order,
¢y = ¢ = o (X, ). (7.44)
Now we consider the next-order terms in (7.36). At {lile interface (top and bottom)

3"

- =vp®.VHj, j=12 (7.45)

From (7.32), using (7.41) and (7.42), we get

oy _ 39y
= 0p—2—. 7.4
o1 = 02 (7.46)
Now, at this order in Eq. (7.27),
32¢(1) ©
— )
o> =-V-(ocVp?). (7.47)
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We integrate with respect {8 in both layers and obtain

dy” ©)
o1 97 =-V. (0’1V¢1 )Z + A1(X,Y), (748)
and
d5" ©
o2 = =V (02V¢5") Z + Ax(X, Y). (7.49)
At Z = 0 we get
oo
= A1(X,Y 7.50
N7 1(X,Y), ( )
and
d¢y”
—= = Ax(X,Y); 7.51
02—~ 2(X,Y) (7.51)
therefore, by (7.46),
AL = Ap. (7.52)
Consider (7.48) aZ = Hj:
3¢y 0
o1 8; =-V. (GlV(f)}_ )> Hl + A]_(X, Y) (753)
1
Substitutingag’é) from (7.45) leads to the following expression fay(X, Y):
ALX,Y) = (01V) - VHL + V - (61V? ) Hy. (7.54)
Hence,
AL(X,Y) =V - (o1H1 V(). (7.55)

Similarly, atZ = H, we obtain
As(X,Y) =V - (62HV ). (7.56)
From (7.44), (7.52), (7.55), and (7.56), we now have
V- ((o1H1 — 02H) V@) = 0. (7.57)

Multiplying (7.57) by H and noting thah; is negative (so thdh,| is the thickness of the
lower layer), we finally obtain

V((O’lhl + 02|h2|)V¢(°)) =0. (758)

A careful presentation of a similar derivation, with motivation and details concerning tl
treatment of boundary conditions, can be found in the monograph [3].
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